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The geometrical structure of a complexified theory of 
gravitation 
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Blackett Laboratory, Imperial College of Science and Technology, Prince Consort Road, 
London SW7 2BZ, England 

Received 30 June 1980 

Abstract. We outline the procedure for the complexification of the tangent bundle over a 
four-dimensional space-time manifold. By introducing a connection and metric compatible 
with the complex structure, we form the geometrical basis for a new (complexified) theory of 
gravitation whose fundamental gauge group is U(3 , l ) .  We further prove that the Lagran- 
gian for the theory is necessarily real when the connection is compatible with the metric. 

1. Introduction 

Much effort has gone into trying to find a single theory which combines gravity and 
quantum mechanics in a self-consistent and compelling way. Since the field of complex 
numbers plays a fundamental role in quantum mechanics, it is natural to ask how one 
might include complex numbers into a geometrical description of physical space-time. 
The approach to be presented here is perhaps the simplest and most naive. The 
resulting (classical) theory, however, has many fascinating consequences which indicate 
that this approach might have brought us a step closer to the unification of gravitation 
and quantum mechanics. 

The geometrical structure we shall use involves the complexification of the tangent 
bundle over a real four-dimensional manifold. Note that space-time itself is not 
complexified, in keeping with the experimental observation that physics seems to occur 
in an arena which is fundamentally four-dimensional and real. Section 2 of this paper 
describes the complexification procedure and introduces the dynamical structure 
required by a geometrical theory. Section 3 derives a Lagrangian from this structure 
and proves that it is pure real. This Lagrangian is related to the one used to derive a new 
non-symmetric theory of gravitation (Moffat 1979). The reality of this Lagrangian is a 
new result which emerges naturally from the formalism presented here. Finally, in 3 4 
we present conclusions and possible areas for future investigation. 

2. The geometrical structure 

We take M to be a four-dimensional differentiable manifold, labelled by real coor- 
dinates { x ” } ,  CL = 1, . . . , 4 .  The field of complex numbers is introduced simply by 
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extending the algebra of real-valued functions on M to 9", the algebra of complex- 
valued functions. A real representation for the complex-valued function f " ( x )  is 
provided by the ordered pair of real-valued functions (fR(x), f ' ( x ) ) ,  with canonical 
complex structure, J, such that? 

(1) 

It is this real representation on which we shall focus our attention, for reasons which will 
be made apparent. 

Once complex-valued functions are given, it is natural to define a complex-valued 
vector, A", which maps the algebra of complex-valued functions onto itself: 

J(fR,  f7 = (-f', fR). 

We choose to work with a real representation of A", which we shall call A. We 
therefore define at each point x E M an eight-dimensional real vector space$ 

(3) 

where T, is the tangent space of M at x. In general the entire group GL(8, R )  can act on 
the elements of F,, so that patching all (Fx x U ) ,  where U is some neighbourhood of M, 
yields an associated fibre bundle with structure group GL(8, R )  and typical fibre 
F, - R8. Technically, we take the frame bundle L ( M )  and form the associated bundle 
L ( M )  X GL(4, GL(8, R).  This is, the space consisting of the equivalence classes 
[ U ,  g ]  = { (w ,  k) such that w E L ( M ) ,  k E GL(8, R), w = uh, k = h - l g ,  u E L ( M ) ,  g E 

GL(8, R ) ,  h E GT44, R)}§. 
We now define a complex structure J on F,. Such complex structures are in 

one-to-one correspondence with reductions of the structure group GL(8, R) to 
GL(4, (Kobayashi and Nomizu 1964b). By defining J we reduce the bundle of 
linear frames11 of f, to that of complex linear frames. We can always find a basis for F, : 

T, := T, x T,, 

{&} := {&, &}, A = 1 , .  . . ,8 ,  a = 1, . . , , 4 ,  LT:=a+4 (4a 1 

t?c = JZa (4b) 

J Z E  = -Zm. (4c) 

such that 

and hence 

In this basis J takes the form 

J $  = Sap,  J" P - - -6" P ,  J ; = J $ = Q .  (5a, 5b, 5 c )  

This basis allows the canonical choice of a four-dimensional subspace, namely that 
subspace spanned by {Zl ,  &, e'3, Z4}, which may be identified with T,. F, now provides a 
real representation for complex-valued vectors, with the following correspondence: 

A(x)+A(x)  = (Aa(x)+iAE(x))ea (6) 

f Arguments of functions will henceforth be suppressed where no ambiguity results. 
$Actually T, is the space of ordered pairs (A ,  B )  of vectors A, B E  Tx, with the multiplication law 
A (A ,  B )  = (AA, AB), and the addition law (A', B')  + (A, B )  = (A'+ A, B'+B) .  
8 See Kobayashi and Nomizu (1964a, p 5 5 )  for details. 
1) A linear frame at x is defined to be a non-singular linear map from R E  + Fx. 
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where {e,} is a basis for T,. Since T, = T, x T,, we have chosen a basis with i!, = (ee, 0) 
and & = (0, ea) .  Hence eachvector A E ?, represents an ordered pair (AR(x) ,  A'(x)) of 
4-vectors in T,, such that AR(x)  is the 'real part' of A(x)  and A'(xj is the 'imaginary 
part' of A(x) .  One important consequence of this choice is that coordinate trans- 
formations of M induce the real subgroup of GL(4, C) transformations on p,. It is 
important to note that no dynamical structure has yet been introduced on M, since the 
complex structures is fixed a priori. 

It is now possible to define the action of a complex-valued vector A @  on a 
complex-valued function f ' ,  in terms of their real representations. In particular 

A: ( f R , f l )  ~ ( A ~ ~ ~ - A I ~ ' , A ~ ~ ' + A ' ~ ~ ) ,  (7) 

where ARfR, A'f' etc are defined in the usual way since A R ,  A' and i", f '  are real 
vectors and functlw- respectively. Equation (7) leads to the unique definition of the 
Lie bracket [A, E ]  on T, 

(8) 

It is interesting to note that with the above definitions the torsion of the complex 
structure 

(9) 
is identically zero. 

We ncw have an associated GL(4, C) bundle over M, with typical fibre ?, - C4. It is 
possible to define a connection over the bundle, which tells us how to move horizontally 
from one fibre, F,, to another, f,,. Since ( x ' - x )  is locally determined by a vector in T,, 
our connection defines the covariant derivative operator, V,  which is a map from T, x Fx 
into p,. In particular, for A E f,, B E T,., we have 

[A, g ]  := ( [AR,  BR] - [A', B'], [AR, El']+ [A', BR])  

NJ(A, E ) : = { [ J A , J E ] - [ A ,  E ] - J [ A ,  JE]-J[JA, E ] }  

V B A  =AA(x)VBEA f (BAA(X))EA. (10) 

Since A A ( x )  is a real function on M and B is a real vector on M, BAA(x) is well defined. 
In a coordinated basis we have 

(1 1) 
V,A =[B&A ' A  r ,~+B'"(aA"/aX~)];c ,  C 

where we have defined 

TZAEC := V,6ZA. (12) 

Note that the indices referring to the basis { E A }  of f, are internal indices, and must be 
kept distinct from the space-time indices referring to {e,} of T,. One of the advantages 
of using the real representation of the complexified tangent space is that this distinction 
is manifest. 

So far the components r$, denote the 4 x 8' degrees of freedom of a GL(8, R )  
connection over M. In order to restrict ourselves to the desired GL(4, C) connection, 
we require the coniection to be compatible with the complex structure. The condition 
is 

(VJ) = 0, (13a) 
or 

V(JA) = J(VA), 
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which yields via equation (5) 

rE6 = rzD, ( 1 4 ~ )  

yB= -re FLP. (14b) 
We are thus left with the desired 2 x 43 independent degrees of freedom of a GL(4, C) 
connection over M. A complex-valued connection W @  can now be represented by 

(15) 

As in general relativity, we now introduce a metric structure i(x) on each fibre F,, 
with the added condition that it be compatible with the complex structure. In other 
words g" is a Hermitian fibre metric: 

(16) 

W E ;  := rZ6 + ir16. 

g(A, 5 )  = ~ ( 5 ,  A) = ~ ( J A ,  ~ 5 )  = i A B A A g E " .  

Note that 

g "no - = -  g p d .  (17c) 
g provides a real representation for a sesquilinear Hermitian form g' acting on 
complex-valued vectors as follows: 

g c ( A c ,  B') := g(A, 5 )  + @ ( a ,  .T i ) ,  (18a) 

so that 

(18b) 

We now consider the condition necessary for the connection defined in equation (5) 

c g,, = LV + iBKC. 

to be compatible with the metric structure. The condition is 

vg = 0, (19a) 

which implies that 

(19c) 
C 

gAB,fi - r ,AgCB - r:EgAC = 0 

in a coordinated basis for T,. In terms of the complex-valued metric and the connection 
of equations (18a) and (15), equation (19c) is just the familiar condition (Kunstatter 
6979, 1980) 

(20) 
By introducing a metric and connection on f" which are compatible with each other 

and with the complex structure, we have reduced the structure group of our fibre bundle 
from GL(4, C) to U(3, 1). At  each point x we can find eight orthonormal frames 
{h;} = {it, J&}; i, j = 1, . . . , 4 ;  I, J = 1, . . . , 8, which remain orthogonal under unitary 
transformations. That is 

(21) 

- 
02 

&?,,,A - gzuw: ;  - g;<w:: = 0. 

g(iIy h j )  = q I J  = g'(l!Fh"i, A:{=), 
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0 where 7711 = (2’ q,,) and h r i s  an element of the eight-dimensional real representation of 
the group U(3, 1). The h; provide a real representation for complex-valued tetrads 
over M :  

i: := (&f +&?)e,. (22) 

The &i= Jgi provide no new information since 
* * -  hy  = -hy 

64 = Cy. 
The entire structure described above has been formulated in an elegant way using G 

structures by Coleman (1980). While his formalism is more compact, we feel that the 
present formulation makes explicit the true geometrical nature of the complex-valued 
vectors and forms which are used. The metric g“ is defined totally in terms of a real, 
symmetric metric on T,. The ‘ungeometrical’ skew parts of g“ are only a manifestation 
of the complex-valued representation. In addition, as previously stated, by working 
with the real representation, one is forced to distinguish between the internal degrees of 
freedom reflected by the complexification of the tangent space, and the degrees of 
freedom allowed by translations in real four-dimensional space-time. 

3. The Lagrangian 

In order to formulate a physical theory, we must construct a Lagrangian 2 ( x )  from the 
geometrical structures at hand, namely J, V and g (or equivalently {&I}). To this end we 
first define the curvature form R(A,  B ) ,  which, given two vectors A, B E T,, maps Fx 
onto itself: 

R(A, B ) :  C WR(A, B)C = (vAvB - v ~ v ~ - v ~ ~ , ~ , ) C  = C B ~ f i ~ u ~ ; , , B ~ A ,  (25) 

where, in a coordinated basis, 

It can easily be verified that equations (14a) and (14b) imply that 

R z y p  = R zyp, 
R “  - = - R “  

& U P  & U P .  

We therefore have the complex-valued curvature tensor 

R E:p := R zyp + iR zyp 
= WZpa,” - w;;, - w,”: w:; + w;: w;;. (28) 

RctB dx”C3dx” defines a two-form in T: C3T:. It can, however, be lifted to 

&A, B):= R ( A ~ ,  B ~ )  (29) 

f: 0 T: by defining 

where AR, BR are the real projections of A, I? onto T,. Although E(A, B) is not 
invariant under general unitary transformations, it is invariant under the subgroup of 
real transformations induced by coordinate transformations of M. 
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There are only four independent scalars which are linear in k.  They are as follows: 

( 3 0 a )  (i) 

(ii) g(k(i1, &I&, ~ h ~ ) q ~ ~ q ~ ~  = g ” ’ l B ~ & , B  (30b)  

( 3 0 ~ )  

g”(g(h;, h;)h;c, h;)q IK 77 JL = g”FBR LuB 

(iii) g“(fi(L1, Jh;)h;c, LL)q IJ 77 K L  =t”‘R$y~ 

(iv) g”(R(&, ~ h ; ) i K ,  ~ l ~ ) q ~ ~ q ~ ~  = g “ * ’ ~ E V p .  ( 3 0 4  
A sample derivation of the component form of these quantities is given in the 
Appendix. Note that these scalars are also invariant under unitary transformations of 
the frames: h; + fii = && because all internal tetrad indices have been contracted out. 

The meaning of the terms (i)-(iv) is apparent when they are written in terms of g@ 
and R‘: 

(9 Re(g@””R:,*,) 

(ii) Im(g@&“R ,”&) 

(iii) Re(g“””R E Z e )  
(iv) Im(g@””REze) 

where Re and Im denote real and imaginary parts respectively. Thus, in terms of the 
complex-valued tensors, the (complex) Lagrangian is merely a linear combination of 
the traces of the first and second contractions of the generalised curvature tensor. 
Moreover, it is shown in the Appendix that when the connection is metrically compati- 
ble, both (ii) and (iv) are identically zero. We therefore have the important result that 
the geometrical structure guarantees the reality of the Lagrangian. 

Of course, in order to perform an integration over M, we require a scalar density. 
The most natural choice is simply (-det g‘)”’ = (-det g“)1’4, which is necessarily real 
when g@ is Hermitian and non-degenerate. The Lagrangian density, in terms of the 
complex-valued tensors, is therefore 

(32)  2 ( x )  = ( - g  c ) 1’2 (agcwuREZa + bg@”””R~,“,) 

where a and b are arbitrary real parameters. 

4. Conclusions 

We have examined the geometrical structure which results when the algebra of real 
functions over space-time is extended to that of complex-valued functions. We have 
also constructed a gauge-invariant Lagrangian and shown it to be real, even when the 
geometrical fields are complex-valued. This Lagrangian is in fact related to the one 
used to derive the vacuum field equations for a new theory of gravitation which has 
recently been the subject of much research (Moffat 1979, Kunstatter 1979). 

By focusing on the real representation for the complex structure, the difference 
between internal indices and space-time indices is made manifest. It is in fact possible 
to formulate the above structure in terms of a fully complex base manifold. The extra 
degrees of freedom which occur must then be removed by appropriate constraints on 
the field variables. This is in fact analogous to the superspace formulation of super- 
gravity, in which some form of dimensional reduction (Brink et a1 1977, Sohnius et a1 
1980) is needed to regain four-dimensional space-time. 
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It is well known that complex numbers and unitary gauge groups play an important 
role in modern physics. The present paper has described one way in which this complex 
structure might interact with the geometrical structure of space-time. Much work 
remains to be done before the full implications of this approach are known. One 
possible area for future investigation lies in the further generalisation of complex- 
valued functions on the manifold to functions which map M into R " ,  for example. It 
would also be interesting to ask what would happen if the complex structure were 
treated as a dynamical field, instead of being fixed a priori. More important, however, is 
the investigation of the physical implications of a theory of gravitation based on the 
structure presented here, so that one might check experimentally whether or not it 
describes the geometry of our physical world. 

Appendix 

We shall now derive explicitly equation (30b). 

But from equation (21) it can be shown that 

~ I ~ J T  g , ' A  ' B  IJ = -AB 

where gAn is the inverse of &=: 

Moreover 
C ' D  ( J ~ L ) ~  =JDhL,  

However, equation (5) implies that 

where we have used equations (17b)  apd (17c). Substitution of equation (A6) into (A5) 
then yields the result in equation (30b). 

We shall now prove that the Lagrangian is pure real. This is done most simply in 
terms of the complex-valued tetrads h? of equation (22) and the complex-valued 
curvature form RF' which acts on the tetrads: 

h? -+ RFihF. 647)  
T It is straightforward to show that the {h?} will be horizontal only if Re'' = -R ", where 

the bar denotes complex conjugation and we have raised the tetrad index with q". That 
is, the curvature form must be anti-Hermitian. It can also be seen that (i) and (ii) of 
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equations (30a)  and (30b)  are the real and imaginary parts, respectively, of 

where we have interchanged dummy variables and used the symmetries of RE$. Thus 
term (ii) must be zero. 

Terms (iii) and (iv) in equations (30a)  and (30b)  correspond to the real and 
imaginary parts of 

But since Rei’ is anti-Hermitian, its trace must be imaginary. Hence, RZu is Hermitian 
in the indices y and v. Equation (A9) is therefore real and term (iv) must vanish. This 
completes the proof. 

Of course, we could have used the real representation or the complex-valued 
tensors g,, and RTS,, in the above proof. However, the method presented is perhaps 
the briefest and most straightforward. 

c @@A 
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